Link Search Menu Expand Document
import sys
import os
import warnings
warnings.filterwarnings("ignore")
warnings.filterwarnings("ignore", category=DeprecationWarning) 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt;

from scipy.stats.mstats import normaltest
import scipy.stats as sps

sys.path.insert(0,os.path.join("..", "..", "dependencies"))
import pyemu
import flopy
assert "dependencies" in flopy.__file__
assert "dependencies" in pyemu.__file__
sys.path.insert(0,"..")
import herebedragons as hbd
import geostat_helpers as gh


plt.rcParams['font.size'] = 10
pyemu.plot_utils.font =10



Geostatistics

This notebook is a very high-level introduction to geostatisics. Some definitions from Geoff Bohling http://people.ku.edu/~gbohling/cpe940/Variograms.pdf

Geostatistics: study of phenomena that vary in space and/or time” (Deutsch, 2002)

Geostatistics can be regarded as a collection of numerical techniques that deal with the characterization of spatial attributes, employing primarily random models in a manner similar to the way in which time series analysis characterizes temporal data.” (Olea, 1999)

Geostatistics offers a way of describing the spatial continuity of natural phenomena and provides adaptations of classical regression techniques to take advantage of this continuity.” (Isaaks and Srivastava, 1989)

Geostatistics deals with spatially autocorrelated data.

Autocorrelation: correlation between elements of a series and others from the same series separated from them by a given interval.” (Oxford American Dictionary)

Main Concepts

  1. Variogram modeling – a way to characterize spatial correlation
  2. Kriging – a best linear unbiased estimate (BLUE) for interpolation with minimum variance. There are several flavors - we will focus on Ordinary Kriging
  3. Stochastic Simulation – http://petrowiki.org/Geostatistical_conditional_simulation
  4. Beyond this multi-Gaussian approach focused on the relationships among pairs of points, there is multiple point geostatistics as well using training images and more complex shapes

These concepts each build on each other. We will briefly touch on the first two.

Generate a Field

Let’s cook up a quick random field and explore the spatial structure.

X,Y,Z,v,gs,sample_df = gh.data_cooker()
Initializing a variogram model
Making the domain
Initializing covariance model
Drawing from the Geostatistical Model
SpecSim.initialize() summary: full_delx X full_dely: 2162 X 2162

Visualize the Field

Pretend (key word!) that this is a hydraulic conductivity field. What do you think? Any autocorrelation here? Note how values spread continuously. Points which are close together have similar values. They are not entirely random.

gh.grid_plot(X,Y,Z);

png

In practice, we would typically only know the values at a few points (and probably not perfectly). (Think pumping tests or other point-sample site characterisation methods.) So how do we go from these “few” samples to a continuous parameter field?

note: the default number of samples we use here is 50.

gh.field_scatterplot(sample_df.x,sample_df.y,sample_df.z);

png

Main Assumptions:

  1. The values are second order stationary (the mean and variance are relatively constant)
  2. The values are multi-Gaussian (e.g. normally distributed)

If we inspect our generated data, we see that it is normally distributed, so that’s good. (side note: of course it is, we generated it using geostaticsits..so we are cheating here…)

plt.hist(Z.ravel(), bins=50)
x=np.linspace(70,130,100)
plt.plot(x,sps.norm.pdf(x, np.mean(Z),np.std(Z))*len(Z.ravel()));

png

What about our sample?

plt.hist(sample_df.z, bins=50)
x=np.linspace(70,130,100)
plt.plot(x,sps.norm.pdf(x, np.mean(sample_df.z),np.std(sample_df.z))*len(sample_df.z))
[<matplotlib.lines.Line2D at 0x293855c6d90>]

png

Purity is commendable, but in practice we are going to violate some of these assumptions for sure.

Variograms

At the heart of geostatistics is some kind of model expressing the variability of properties in a field. This is a “variogram” and we can explore it based on the following empirical formula:

\[\hat{\gamma}\left(h\right)=\frac{1}{2\left(h\right)}\left(z\left(x_1\right)-z\left(x_2\right)\right)^2\]

where $x_1$ and $x_2$ are the locations of two $z$ data points separated by distance $h$.

If we plot these up we get something called a cloud plot showing $\hat\gamma$ for all pairs in the dataset

h,gam,ax=gh.plot_empirical_variogram(sample_df.x,sample_df.y,sample_df.z,0)

png

This is pretty messy, so typically it is evaluated in bins, and usually only over half the total possible distance

h,gam,ax=gh.plot_empirical_variogram(sample_df.x,sample_df.y,sample_df.z,50)

png

Also note that this was assuming perfect observations. What if there was ~10% noise?

h,gam,ax=gh.plot_empirical_variogram(sample_df.x,sample_df.y,sample_df.z_noisy,30)

png

Geostatistics is making the assumption that you can model the variability of this field using a variogram. The variogram is closely related to covariance. We take advantage of a few assumptions to come up with a few functional forms that should characterize this behavior.

Variograms in pyemu

pyemu supports three variogram models. (As do most of the utilities in the PEST-suite of software.) This follows the GSLIB terminology:

  1. Spherical
    $\gamma\left(h\right)=c\times\left[1.5\frac{h}{a}-0.5\frac{h}{a}^3\right]$ if $h<a$ $\gamma\left(h\right)=c$ if $h \ge a$

  2. Exponential
    $\gamma\left(h\right)=c\times\left[1-\exp\left(-\frac{h}{a}\right)\right]$

  3. Gaussian
    $\gamma\left(h\right)=c\times\left[1-\exp\left(-\frac{h^2}{a^2}\right)\right]$

$h$ is the separation distance, and $a$ is the range. contribution is the variogram value at which the variogram levels off. Also called the sill, this value is the maximum variability between points. The sill is reached at about $a$ for the Spherical model, $2a$ for the Gaussian, and $3a$ for the Exponential

What do these look like?

For a consistent set of parameters:

a=500, c=10

We can use pyemu to setup a geostatistical model

a=500
c=10

Set up a variogram object and, from that, build a geostatistical structure

Spherical

v = pyemu.geostats.SphVario(contribution=c, a=a)
gs = pyemu.geostats.GeoStruct(variograms=v)
gs.plot()
plt.plot([v.a,v.a],[0,v.contribution],'r')
plt.grid()

png

Q= gs.covariance_matrix(X.ravel(), Y.ravel(), names=[str(i) for i in range(len(Y.ravel()))])
plt.figure(figsize=(6,6))
plt.imshow(Q.x)
plt.colorbar();

png

Exponential

v = pyemu.geostats.ExpVario(contribution=c, a=a)
gs = pyemu.geostats.GeoStruct(variograms=v)
gs.plot()
plt.plot([v.a,v.a],[0,v.contribution],'r')
plt.plot([3*v.a,3*v.a],[0,v.contribution],'r:')
plt.grid();

png

Q= gs.covariance_matrix(X.ravel(), Y.ravel(), names=[str(i) for i in range(len(Y.ravel()))])
plt.figure(figsize=(6,6))
plt.imshow(Q.x)
plt.colorbar();

png

Gaussian

v = pyemu.geostats.GauVario(contribution=c, a=a)
gs = pyemu.geostats.GeoStruct(variograms=v)
gs.plot()
plt.plot([v.a,v.a],[0,v.contribution],'r')
plt.plot([7/4*v.a,7/4*v.a],[0,v.contribution],'r:')
plt.grid();

png

Q= gs.covariance_matrix(X.ravel(), Y.ravel(), names=[str(i) for i in range(len(Y.ravel()))])
plt.figure(figsize=(6,6))
plt.imshow(Q.x)
plt.colorbar();

png

Interpolating from Sparse Data

So how do we go from a sample of measurments (i.e. our 50 points, sampled frmo the field at the start of the notebook) and generate a continuous filed? If we fit an appropriate model ($\gamma$) to the empirical variogram ($\hat\gamma$), we can use that structure for interpolation from sparse data.

Experiment below with changing the new_a and new_c variables and/or the variogram type.

h,gam,ax=gh.plot_empirical_variogram(sample_df.x,sample_df.y,sample_df.z,50)
new_c=10
new_a=500.0

v_fit = pyemu.geostats.ExpVario(contribution=new_c,a=new_a)
gs_fit = pyemu.geostats.GeoStruct(variograms=v_fit)
gs_fit.plot(ax=ax);

png

Q = gs_fit.covariance_matrix(X.ravel(), Y.ravel(), names=[str(i) for i in range(len(Y.ravel()))])
plt.figure(figsize=(6,6))
plt.imshow(Q.x)
plt.colorbar();

png

Now we can perform Kriging to interpolate using this variogram and our “sample data”. First make an Ordinary Kriging object:

k = pyemu.geostats.OrdinaryKrige(gs_fit,sample_df)
sample_df.head()
x y z z_noisy name
name
p0 287.116655 699.455696 85.372835 83.771018 p0
p1 253.732612 910.336327 82.353507 96.801400 p1
p2 274.886538 167.553939 82.260247 82.146898 p2
p3 32.513697 966.814451 81.683278 79.377728 p3
p4 565.624540 767.730971 83.725429 85.923798 p4

Next we need to calculate factors (we only do this once - takes a few seconds)

kfactors = k.calc_factors(X.ravel(),Y.ravel())
starting interp point loop for 2500 points
took 9.01365 seconds

It’s easiest to think of these factors as weights on surrounding point to calculate a weighted average of the surrounding values. The weight is a function of the distance - points father away have smaller weights.

kfactors.head()
x y idist inames ifacts err_var
0 1.000000 1.0 [184.7051991534765, 207.40971945627004, 386.50730584099625, 491.60458345801544, 580.295266631326... [p38, p20, p40, p37, p36, p33, p10, p35, p18, p0, p43] [0.4327770142438521, 0.3417529484244285, 0.004059230296319384, 0.04778912246916971, 0.0501610806... 2.767218
1 21.387755 1.0 [169.14795023838278, 187.0266048520901, 370.70802497724264, 471.21711009351276, 575.554567272516... [p38, p20, p40, p37, p36, p33, p10, p35, p18, p0, p43] [0.43604287579758993, 0.36167431286832813, 0.0020604545233822214, 0.04483723075668418, 0.0440368... 2.574679
2 41.775510 1.0 [154.71706002108814, 166.64462558472334, 450.82966221072473, 571.5022698624969, 650.332363132082... [p38, p20, p37, p36, p33, p35, p18, p10, p0, p43] [0.43557284599104173, 0.3857123856407392, 0.041766258070064934, 0.03765454657692189, 0.022814952... 2.374874
3 62.163265 1.0 [141.7569376414895, 146.264256283779, 430.4422434303959, 568.1531044744195, 630.8486277459325, 6... [p38, p20, p37, p36, p33, p35, p18, p10, p43, p0] [0.42882967662347826, 0.41442810902652116, 0.038478280336504585, 0.03109342162082103, 0.02008586... 2.169980
4 82.551020 1.0 [125.8862788886181, 130.70581927985793, 410.0548580933408, 565.5195636810955, 645.0133254748288,... [p20, p38, p37, p36, p35, p18, p10, p43, p30] [0.4523516266403694, 0.41636993457552113, 0.03176622888874157, 0.02508944553343011, 0.0014195050... 2.009520

Now interpolate from our sampled points to a grid:

Z_interp = gh.geostat_interpolate(X,Y,k.interp_data, sample_df)
ax=gh.grid_plot(X,Y,Z_interp, title='reconstruction', vlims=[72,92])
ax.plot(sample_df.x,sample_df.y, 'ko');

png

gh.grid_plot(X,Y,Z,title='truth', vlims=[72,92])
<AxesSubplot:>

png

ax=gh.grid_plot(X,Y,kfactors.err_var.values.reshape(X.shape), title='Variance of Estimate')
ax.plot(sample_df.x,sample_df.y, 'ko');

png

ax=gh.grid_plot(X,Y,np.abs(Z-Z_interp), title='Actual Differences')
ax.plot(sample_df.x,sample_df.y, 'yo');

png

What if our data were noisy?

Try and get a good fit by adjusting the new_c and new_a values:

h,gam,ax=gh.plot_empirical_variogram(sample_df.x,sample_df.y,sample_df.z_noisy,30)
new_c=50.0
new_a=350.0

# select which kind of variogram here because in reality we don't know, right?
v_fit = pyemu.geostats.ExpVario(contribution=new_c,a=new_a)
gs_fit = pyemu.geostats.GeoStruct(variograms=v_fit, nugget=50)
gs_fit.plot(ax=ax);

png

Q = gs_fit.covariance_matrix(X.ravel(), Y.ravel(), names=[str(i) for i in range(len(Y.ravel()))])
plt.figure(figsize=(6,6))
plt.imshow(Q.x)
plt.colorbar();

png

Again make the Kriging Object and the factors and interpolate

k = pyemu.geostats.OrdinaryKrige(gs_fit,sample_df)
kfactors = k.calc_factors(X.ravel(),Y.ravel())
Z_interp = gh.geostat_interpolate(X,Y,k.interp_data, sample_df)
starting interp point loop for 2500 points
took 8.10782 seconds
ax=gh.grid_plot(X,Y,Z_interp, vlims=[72,92], title='reconstruction')
ax.plot(sample_df.x,sample_df.y, 'ko')
[<matplotlib.lines.Line2D at 0x29385711160>]

png

gh.grid_plot(X,Y,Z, vlims=[72,92],title='truth');

png

ax=gh.grid_plot(X,Y,kfactors.err_var.values.reshape(X.shape), title='Variance of Estimate')
ax.plot(sample_df.x,sample_df.y, 'ko');

png

ax=gh.grid_plot(X,Y,np.abs(Z-Z_interp), title='Actual Differences')
ax.plot(sample_df.x,sample_df.y, 'yo')
[<matplotlib.lines.Line2D at 0x29395d134f0>]

png

Spectral simulation

Because pyemu is pure python (and because the developers are lazy), it only implments spectral simulation for grid-scale field generation. For regular grids without anisotropy and without conditioning data (“known” property values), it is identical to sequential gaussian simulation.

Each of hte plots below illustrate the effect of different values of a. Experiment with changing a, contribution, etc to get a feel for how they affect spatial patterns.

ev = pyemu.geostats.ExpVario(1.0,1, )
gs = pyemu.geostats.GeoStruct(variograms=ev)
ss = pyemu.geostats.SpecSim2d(np.ones(100),np.ones(100),gs)
plt.imshow(ss.draw_arrays()[0]);
SpecSim.initialize() summary: full_delx X full_dely: 116 X 116

png

ev = pyemu.geostats.ExpVario(1.0,5)
gs = pyemu.geostats.GeoStruct(variograms=ev)
ss = pyemu.geostats.SpecSim2d(np.ones(100),np.ones(100),gs)
plt.imshow(ss.draw_arrays()[0]);
SpecSim.initialize() summary: full_delx X full_dely: 132 X 132

png

ev = pyemu.geostats.ExpVario(1.0,500)
gs = pyemu.geostats.GeoStruct(variograms=ev)
ss = pyemu.geostats.SpecSim2d(np.ones(100),np.ones(100),gs)
plt.imshow(ss.draw_arrays()[0]);
SpecSim.initialize() summary: full_delx X full_dely: 3108 X 3108

png

Further resources and information

  1. These concepts are used for pilot point interpolation in PEST:
    • In the GW utilities in PEST (http://www.pesthomepage.org/Groundwater_Utilities.php)
    • The main tools are also available in pyemu – we’ll use that in the class
  2. The Stanford Geostatistical Modeling Software (SGeMS: http://sgems.sourceforge.net/) is a nice GUI for geostatistical modeling, but it’s not being maintained anymore.
  3. Python libraries for geostistics:
  4. R has a package: http://rgeostats.free.fr/